
An Introduction to Pascal Programming

Pascal is a high level language. It was invented by Niklaus Wirth, a computer scientist at the Institute of
Informatics in Zurich. The language was published in 1971 and named in honour of the seventeenth century
French Philosopher and Mathematician, Blaise Pascal, who invented the first automatic adding machine. Based
on responses from experience users the language was slightly modified and published in a revised form in 1973.
His principal objectives for Pascal were for the language to be efficient to implement and run, allow for the
development of well structured and well organized programs, and to serve as a vehicle for the teaching of the
important concepts of computer programming. The section below illustrates the general format of a typical
Pascal program.

Program NameOfProgram (input, output); {Heading}
Uses Crt, Dos; [Units]
CONST

constantName = literal; comment
Var

variableName : Datatype; comment

Begin
statement1

.;

.;
statementN;

End.
As shown above all Pascal programs must begin with the reserve word program, followed by the name given to
the program. The words input and output are used to indicate that the program will accept input and produce
output, respectively. Uses, identifies predefined programs/units within the compiler that the programmer intends
to use in the program. CONST is used to indicate constants, that is, values that will remain unchanged
throughout the life of the program. For each constant and name must be specified and the literal (value). Var is
used to indicate that what come after are the variables (known as identifiers in Pascal) to be used in the program
– all variables to be used in the program must be declared. Equally, all variables must be assigned the
appropriate data type. The most common data types used in Pascal are: integer, real, char and string. Begin tells
the compiler where the executable statements start. End, with a full stop (period) indicates where the program
terminates. It is important to note that statement beyond this point will not be recognized by the compiler.
Comments help you to document and maintain your program. Comments are ignored by the compiler.

Integers are positive and negative whole numbers including zero, example, -12. 0, and 5. Real numbers are
those numbers which have a fractional component, example, -12.4, 0.0, 0.25 and 8.72. Char is the short for
character; this is fundamentally used to represent a letter of the alphabet. String is used to represent a number of
characters, example, this can be used to store data for name, and address. You should have already noticed that
all executable Pascal statements end with a semicolon (;). Semicolons are not used at the end of statements that
contain reserve words. Reserve words are words that are set aside by the programming language for special
purposes.

Copyright © Hugh-Hing Lawrence SHS Info. Tech. Dept. January 2010 Page 1 of 5

Declaration
Section

Executable
Statements

Converting Pseudocode to Pascal Programming

INPUT STATEMENT
Pseudocode Pascal
INPUT variableName Read(variableName);
INPUT (score Read(score) or ReadLn (score);

ASSIGNMENT STATEMENT
variableName  Expression variableName := expression
Sum  (a + b) Sum := (a + b);

OUTPUT STATEMENT
DISPLAY “Statement” Write(‘Statement’); or

WriteLn(‘Statement’);
DISPLAY “Statement” ,
variableName

Write(‘Statement’, variableName); or
WriteLn(‘Statement’, variableName);

SELECTION: IF-THEN
IF (x > y) THEN
 DISPLAY “Sum is”, sum
ENDIF

if (x > y) then
 begin
 Write(‘Sum is ’ , sum);
 end;

SELECTION: IF-THEN-ELSE
IF (x > y) THEN
 DISPLAY “Sum is”, sum
ELSE
 DISPLAY “Product is”, product
ENDIF

if (x > y) then
 begin
 Write (‘Sum is ’ , sum);
 end
 else
 begin
 Write (‘Product is ’ , product);
 end;

FOR LOOP
FOR k FROM 1 To 100 DO

DISPLAY “Enter Name “
INPUT name
DISPLAY “Enter Age”
INPUT age

ENDFOR

For k := 1 to 100 do
 Begin
 Write(‘Enter Name ‘);

Read(name);
 Write(‘Enter Age ‘);

Read(age);
 End;

WHILE LOOP
INPUT age
WHILE (age <> 0) do

DISPLAY “Enter Age”
INPUT (age);

ENDWHILE

Read (age);
While (age <> 0) do

Begin
 Write(‘Enter Age ‘);

ReadLn (age);
 End;

Copyright © Hugh-Hing Lawrence SHS Info. Tech. Dept. January 2010 Page 2 of 5

A sample Pascal program

/* This program accepts from a user: an item code, unit price and quantity of the item. It then calculates the cost,
tax amount and the total to be paid. Finally, the amount to be paid is displayed*\

Program Invoice (Input, output);
Uses Crt, Dos;
Const

GCTRATE = 0.175;
Var

itemID: string; {Unique code used to represent each item}
itemName: string; {Name of item}
unitPrice: real; {Price for a single item}
quantity: integer; {Number of given item}
cost: real; {Amount excluding GCT}
tax: real; {Amount for GCT}
total: real; {Amount of money to be paid}

Begin
ClrScr; {Clears the Screen}
Write('Enter itemID => ');
ReadLn(itemID);
Write('Enter Name of Item => ');
ReadLn(itemName);
Write('Enter the Unit Price , dollars and cents => ');
ReadLn(unitPrice);
Write('Enter Number of Items => ');
ReadLn(quantity);

{Calculations}
cost := (unitPrice * quantity);
tax := (cost * GCTRATE);
total := (cost + tax);

WriteLn;
Write('Total amount to be paid is: $' , total:8:2);
WriteLn;

 WriteLn;
Write('Press Any Key to Exit........... ');
ReadKey;

End.

The next two pages give the solution to four (4) sample programs. The main aim of the programs is to
give the reader some insight into how the most common programming constructs are implemented in
the Pascal programming language. It is left up to the reader to try these program codes in the Pascal
compiler. Have fun!

Copyright © Hugh-Hing Lawrence SHS Info. Tech. Dept. January 2010 Page 3 of 5

Question 1: Write a program to accept the length and width of a rectangle calculate and display the area and perimeter.

Program RectangleAP (input, output);
Uses Crt, DOS;
Var

length: integer; {The length of the rectangle}
width: integer; {The width of the rectangle}
area: integer; {The area of the rectangle}
perimeter: integer; {The perimeter of rectangle}

Begin
Clrscr;
WriteLn;
Write(' Enter the length of the rectangle => ');
ReadLn (length);
Write(' Enter the width of the rectangle => ');
ReadLn (width);

area := (length * width);
perimeter := (length + width) * 2;

WriteLn;
Write(' The area of this rectangle is: ' , area, ' square units');
WriteLn;
Write(' The perimeter of this rectangle is: ' , perimeter, ' units');
Readkey;

End.

Question 2: Write a program to accept values in the variable mystery and wild. If mystery is less than wild the program
must calculate and print the square of mystery otherwise the cube of wild should be printed.

Program MysteryWild (input, output);
Uses Crt, DOS;
Var

cube, square, mystery, wild: integer;

begin
Clrscr;
WriteLn;
Write('Enter the first number: ');
ReadLn(mystery);
Write('Enter the second number :');
ReadLn(wild);

if (mystery < wild) then
 begin
 square := (wild * wild);
 WriteLn ('The square of ' , wild, ' is ' , square);
 end
 else
 begin
 WriteLn;
 cube := (mystery * mystery * mystery);
 WriteLn ('The cube of ' , mystery, ' is ' , cube);
 end;

Readkey;
end.

Copyright © Hugh-Hing Lawrence SHS Info. Tech. Dept. January 2010 Page 4 of 5

Question 3: Write a Pascal program to accept 5 integers and print the number of even numbers and odd numbers.

Program EvenOdd (input, output);
Uses Crt, DOS;
Var
evenCount, oddCount, counter, number: integer;

Begin
Clrscr;
For counter := 1 to 5 do

 begin
 Write('Enter an integer: ');
 Read (number);
 IF (number MOD 2 = 0) then
 begin
 evenCount :=(evenCount + 1);
 end
 else
 begin
 oddCount := (oddCount + 1);
 end;

end;
Write ('Count of even numbers is ' , evenCount);
Writeln;
Write ('Count of odd numbers is: ' , oddCount);
Readkey;

end.

Question 4: Write a Pascal program to accept the names and ages of a set of students and print the total of the ages. The
program must terminate when zero is entered for an age

Program AgeCount (input, output);
Var

Age, ageTotal: integer;
Name: string;

Begin
Write(‘Enter the student’s name ‘);
ReadLn(name);
Write(‘Enter the student’s age ‘);
ReadLn(age);

While (age <> 0) do
 Begin

ageTotal := (ageTotal + age);
 Write(‘Enter the student’s name ‘);

ReadLn(name);
 Write(‘Enter the student’s age ‘);
 ReadLn (age);
 End
Write(‘ The total of the ages is’ , ageTotal, ‘years’);
Readkey;

End.

Copyright © Hugh-Hing Lawrence SHS Info. Tech. Dept. January 2010 Page 5 of 5

